

TPC R&D at BNL

Craig Woody BNL

TPC Workshop

June 1, 2015

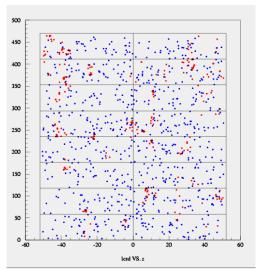
Original TPC/HBD Detector Proposal for PHENIX (circa ~ 2004)

Readout Pads

- TPC provides momentum measurement and particle id through dE/dx. Use ionization in gas volume to measure track trajectory.
- Cherenkov provides particle id as a threshold counter. Measure Cherenkov light produced in gas volume to identify high velocity particles (e.g., electrons)

(could even be a RICH, but that becomes much more difficult)

Fast, Compact TPC R<70 cm, L< 80 cm, T_{drift} < 4 μsec


Previous Design Study

Previous Simulations

Finding electrons in central HIJING events using TPC to identify hits on Cherenkov plane

Rø All hits

Ro Cherenkov Hits

1400 1200 1000 800 600 400 200 1 6 11 16 21

Space Charge Effects Central Au+Au

 $\theta \sim 2.5 \times 10^{-3} \text{ rad}$ $\Delta x \sim 0.5 \text{ mm for } 40 \text{ cm drift}$

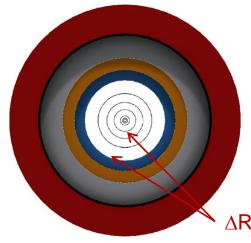
C.Aidala

N. Smirnov

LEGS TPC (circa ~ 2005)

- Designed for low rate (~kHz), low multiplicity (single sample per channel per trigger)
- Inner diameter ~9cm; Outer diameter ~35cm; Drift Length: 50cm

- Drift field ~ 600V/cm (30kV HV)
- Drift time ~ 5µs


- Chevron pad readout (~ 200 µm resolution)
- ~ 7K Readout channels
- Custom ASIC32 channels per chip40mW per chip
- ENC < 250 e's
- 500ns peaking time
- Single peak time and amplitude measurement
- Timing resolution ~ 20ns

Use at RHIC and EIC

sPHENIX BEAST

Used to improve electron id in the central region along with dE/dx

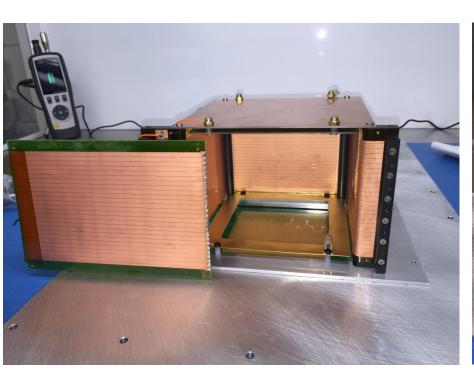
△R for TPC Tracking ~ 30-80 cm

Detector Requirements

- \square Gas must be transparent to UV light \rightarrow CF₄ (like HBD)
- \square Want fast drift velocity (\longrightarrow CF₄ or mixtures containing CF₄)
- Photosensitive GEM must operate near the HV plane of the field cage. Field cage must be optically transparent on its outer radius. How much radial space with it take up?
- What are space charge limitations if used in HI collisions?

3D Detector Model

The Actual Prototype



3 Sided Field Cage + 1 Sided Foil

Kapton foil with 3.9 mm copper strips with 0.1 mm gaps Tested to full operating voltage of 1 kV/cm

Electrostatic Simulation

ANSYS

Top Plate

Field Distortions with One Plane of Wires for Field Cage

4 sides of strips

3 sides of strips + 1 side of wires

Slice in XY plane at mid Z Wire plane is at X=0

Field Distortions with Addition of Cherenkov Mesh

Field Distortions with Addition of Cherenkov Mesh

TPC GEM Detector with Chevron readout board

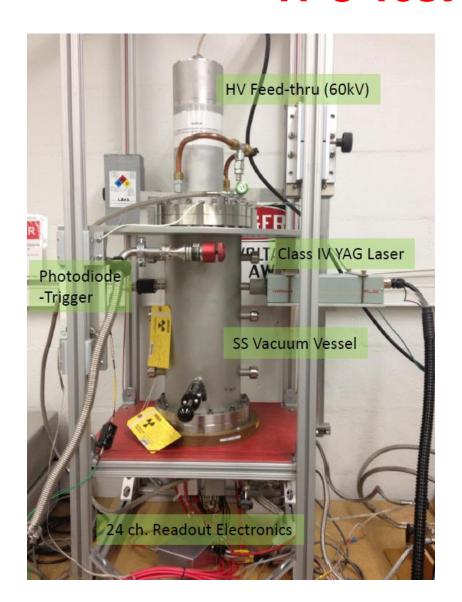
10x10 cm² Triple GEM

2 x10 mm Chevron Strips 0.5 mmm pitch

First Tests of the TPC GEM

Scan across chevron pads with collimated X-ray source

Reconstructed track with GEMs configured as a Minidrift Detector



Position Resolution

Uncorrected: 132 μm Corrected: 98 μm

TPC Test Stand

Drift velocity in Ar/CO₂/Ne gas mixtures,.

Charge attachment in Ar/CO₂ (70/30) over a 32 cm drift distance.

VUV Spectrometer

Transmittance of pure CF₄

Used to make measurements of:

- Csl QE
- Transmittance of gases into the deep UV
- Ion feedback measurements

Electronics

Current readout options

- SRS: 1024 chs, 25 ns sampling 28 samples → 700 ns drift time
- DRS4: 128 chs, 1048 samples with selectable time resolution 0.2 ns → 200 ns drift time
 1 ns → 1 µsec drift time
- Struck SIS3300 : 24 chs, 10 ns sampling, 10 μsec drift time
- VMM2 (derived from LEGS TPC chip)
 Single peak amplitude recorded, 1 μsec time buffer
- GET: General Electronics for TPCs
 General purpose TPC readout system developed at Saclay
 Used in many small to medium sized TPC systems in nuclear physics
- SAMPA
 Being developed for ALICE GEM TPC
 Time scale: needs to be ready by 2018
 → This is probably our best ultimate solution

Summary & Future Plans

- Assembly of the prototype TPC/Cherenkov is complete
- Preliminary testing of the field cage and TPC GEMs look good
- Will test initially as a TPC only (no CsI GEM)
 This will really be a testing ground for learning how to operate a TPC Measure drift velocities, study ion feedback, reconstruct tracks, etc
- Add Cherenkov GEM (no CsI) and study HV effects
 How close can we bring the Č-GEM in proximity to the wire plane?
- Add CsI GEM and study the Cherenkov detector
- Test entire detector in the test beam at Fermilab or SLAC